Dynamics of a 2d Vortex Doublet under External Deformation

نویسنده

  • G. LAPEYRE
چکیده

The influence of an external strain (or shear) field on the evolution of two identical vortices is investigated in a twodimensional incompressible fluid. Using point vortex modeling, two regimes of the vortex doublet (co-rotation and irreversible separation) are determined; the critical intensity of the large scale flow separating these two regimes for a given initial separation of vortices, is calculated. Finite-area effects are then considered for the vortices. The steady states of piecewise constant vortices are computed algebraically and numerically; positive strain (or shear) favors vortex deformation. This deformation has a dominant elliptical component. An elliptical model of two vortices confirms the point vortex model results for centroid trajectories, and the steady state model results concerning the influence of positive strain on vortex deformation. It also provides an estimate of critical merger distance in the presence of large scale flow. Finally, the finite-time, nonlinear evolution of the vortex doublet is simulated with a numerical code of the 2D vorticity equation. The various regimes (stationarity, merger, co-rotation, ejection) are classified in the plane of initial vortex separation and of external deformation. These regimes are analyzed, and the critical merger distance is evaluated for negative and positive external strain; the results are in agreement with the elliptical model prediction. Merger efficiency, defined as the ratio of final to initial vortex circulation, is computed; for the same initial distance, it is smaller for negative strain. It also depends in a more complex way of the initial vortex distance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Vortex Mass in 2d Easy-plane Magnets

Nonlinear vortex excitations in models for layered or two-dimensional (2D) magnets [1] have attracted much study not only for their role in the thermodynamics of the Berezinskii-Kosterlitz-Thouless vortex-unbinding transition [2,3], but more recently because their microscopic dynamic behavior is not fully understood. The dynamics of individual vortices continues under study for ferromagnets (FM...

متن کامل

Discussion on: ''Symmetry Reduction and Control of the Dynamics of a 2-D Rigid Circular Cylinder and a Point Vortex: Vortex Capture and Scattering''

Symmetry reduction and control of the Hamiltonian system of a 2D rigid circular cylinder dynamically interacting with a point vortex external to it is presented. This dynamic model is an idealized example in an inviscid framework of fullycoupled solid-fluid systems interacting in the presence of vorticity and has potential applications to problems in engineering and in nature involving the inte...

متن کامل

2D Numerical Simulation of a Micro Scale Ranque-Hilsch Vortex Tube

  In this study, fluid flow and energy separation in a micro-scale Ranque-HilschVortex Tube are numerically investigated. The flow is assumed as 2D, steady,compressible ideal gas, and shear-stress-transport SST k-W is found to be a bestchoice for modeling of turbulence phenomena. The results are in a good agreementwith the experimental results reported in the literature. The results show that f...

متن کامل

Special Session 12: Complex and Chaotic Dynamics

Vortices are long-lived features of geophysical and laboratory flows. They emerge in free-decay turbulence and govern the long-term evolution of the flow. In 2D flows, two vortices can grow by merger when they are like-signed. The process of vortex merger in 2D flows is well known for a pair of isolated vortices. Nevertheless, in a turbulent field, the velocity field created by neighboring vort...

متن کامل

Prediction of Extrusion Pressure in Vortex Extrusion Using a Streamline Approach

Vortex extrusion (VE) is a severe plastic deformation technique which is based on the synergies between high strain accumulation and high hydrostatic pressure. Such a high amount of pressure, places a mandate to seek the method for investigation of the load under processing conditions. For this, kinematically admissible velocity field and upper bound terms based on Bezier formulation are develo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004